If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=49
We move all terms to the left:
x^2+10x-(49)=0
a = 1; b = 10; c = -49;
Δ = b2-4ac
Δ = 102-4·1·(-49)
Δ = 296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{296}=\sqrt{4*74}=\sqrt{4}*\sqrt{74}=2\sqrt{74}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{74}}{2*1}=\frac{-10-2\sqrt{74}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{74}}{2*1}=\frac{-10+2\sqrt{74}}{2} $
| -6(5x+19=156 | | N+8=4x6 | | 19/44x=x-850 | | 20=14+3m+24 | | (5r+3)(r+4)=0 | | 0-2x=2 | | y-9+y=180 | | 6z2+11z+3=0 | | -4/3x+3/5=-25/6x+7/5 | | 10x-6+2x+3x=180 | | -4(3n-2n)-n=-11(n-1) | | 14-2p-p=26 | | 6(x4)=3(x+7) | | 50+50-25x2+2+2=54 | | m^2=-14m-45 | | 10+3m+6=31 | | .8=x/600000 | | 9w+7-2w=14 | | 24y=85 | | 20387638x+5667=66777-48463638x | | 2=11/2x | | R=(15y+26) | | 15x+3.14=180 | | 8(4-x)=96 | | 68=7a | | 11x+-1=37+12x | | (x+2)^2/3=4 | | 68=3a-10a | | 5/x+2=10 | | (x+2)^(2/3)=4 | | x*1,800*2=378 | | 6+12x=10x-4 |